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Standard Model

•Describes elementary particles and their
interactions

• Fermions: 6 quarks and 6 leptons
• Gauge bosons mediate interactions

• Strong
• Weak
• Electromagnetic
• (Gravity not yet unified)

•Consists of QCD (SU(3)C) and
electroweak theory (SU(2)L ⊗ U(1)Y)

• Mass imputed via spontaneous
symmetry breaking (Higgs Mechanism)

• All measurements have confirmed Standard Model predictions
• But multiple families, unpredicted parameters, no Higgs boson, …
   make completeness of the Standard Model suspect
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Top Quark

• “New”
◆ First observed in 1995
◆ Bottom quark observed in 1977

• Heavy!
◆ >35× as heavy as the bottom
◆ Heaviest elementary particle
    observed so far
◆ Decay to exotic particles ?

• Short-lived
◆ Lifetime is 4 × 10-25s , which is less than the hadronization time
◆ Study the top quark free of confinement
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Top Quark Pair Production

! 

pp •For       collisions at Tevatron,                           :

•Quark-antiquark annihilation 85%

•Gluon-gluon fusion  15%

! 

s =1.96 TeV
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Theoretical Cross Section Prediction

σij  = Partonic cross section for i+j→
xi,j  = Fraction of proton momentum carried by parton i,j
fi  = Parton distribution functions (PDF’s): probability that parton i has
        momentum fraction x
   = xi,xj s
mtop = mass of the top quark
µf,r = Factorization and renormalization scales (µf = µr = µ )

• Cross section σ : proportionality constant interpreted as the
interaction probability

•Partonic cross sections found via perturbative expansion in strong coupling constant
• σij ~ C0αs

2 + C1αs
3 + C2αs

4 + …
• PDF’s determined from global QCD fits to data
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Theoretical Cross Section Prediction

• Next-to-Leading Order (NLO)
with Next-to-Leading

      Logarithm (NLL) corrections
◆ 5.82 - 7.41 pb,
     mtop/2 <  µr,f < 2 mtop
◆ 6.7 ± 1 pb,
     µ  = mtop = 175 GeV
◆ Logarithmic corrections due to

soft gluon emissions
◆ Cacciari et al. (2004)

• NNLO-NNNLL
◆ 6.77 ± 0.42 pb,
     µ  = mtop = 175 GeV
◆ Different kinematic schemes
◆ Logarithmic corrections due to

soft gluon emissions
◆ Kidonakis & Vogt (2003)
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Top Quark Decay

• Br(t → Wb) ~100% in Standard Model

• Final decay states determined by W decay mode:
· 2 b-quark jets

             · Up to 2 leptons + neutrino pairs
· Up to 4 additional jets

• Branching ratios (%)
• All hadronic ~ 44 %
• Lepton + Jets ~ 46%
• Dilepton ~ 10%

•Dimuon channel Br ~1/81 
• including µ’s originating 

          from τ’s (W→ τν decay) 
           BR = 0.01571  
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Why Measure the Cross Section?

• Compare to Standard Model predictions
◆ Measurement ↓ : exotic top decays  (supersymmetric particles)
◆ Measurement ↑: new production mechanisms (     resonances)

• Consistency check with other channels
◆ New physics in unexpected places

• Contributes to top quark properties measurements
◆ Event selection used for top mass or W helicity

• Value to future measurements
◆ Develop analysis techniques
◆ Understand systematic uncertainties for when they dominate statistical

uncertainties

! 
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The Experiment
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Fermilab Tevatron

•       Collider at √ s  = 1.96 TeV
• Data collected from April 2002-August 2004

L int= ~421.4 pb-1

! 
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DØ  Detector

◆ Central Tracking Detectors
▲ Silicon and Fiber tracker within
     2T solenoid
▲ Precision vertex and momenta

measurements of charged particles

◆  Calorimeter
◆ Measures energy of electrons,
   photon and jets

◆ Muon Spectrometer
◆ Identify and measure muon
   momenta
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Central Tracking Detectors

• Silicon Microstrip Tracker
◆ 6 Barrels
◆ 16 Disks
◆ 800,000 channels

• Position resolution
     of 15 µm

•Central Fiber Tracker
•Eight concentric cylinders of scintillating
fibers
•Two layers of fibers per cylinder

• Axial
• Stereo ± 3º

•80,000 channels
• Position resolution of 100 µm
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Calorimeter

• Liquid Argon Calorimeter
• Uranium/Copper/stainless steel absorber plates

• Energy resolutions
• 5 -7% for 20 GeV electrons
• 30% for 20 GeV jets
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Muon Spectrometer

◆ Three layers of wire chambers
◆ Position information

◆ Three layers of scintillation counters
◆ Timing information

◆ Toroid magnet outside innermost layer
with B = 1.8 T

◆ Position resolution: 0.7 to 1.0 mm

◆ Momentum resolution:
   ~20% for muons < 40 GeV (forward)
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Trigger System

•       collision rate  ~ 2 MHz
• Don’t have resources to record them all!
• Three-tiered triggering system selects interesting physics events

◆ Level 1:  Hardware-based triggers (with inputs from different detector
subsystems)

◆ Level 2:  DSP-based triggers

◆ Level 3:  Online event reconstruction

  
50 Hz recorded for offline analysis

My analysis starts with 970, 000, 000 events!

~ 2 MHz

~ 2 kHz

~ 2 kHz

~ 1 kHz

~ 1 kHz

! 
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L1 Muon
 L1 Calorimeter-Track
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L1 Calorimeter-Track Trigger

• Level 1 Calorimeter-Track Trigger
(L1CTK)
◆ Matches tracks from central tracking

detectors with EM and jet objects
from calorimeter
▲ Matching in φ
▲ Matching in PT & ET

• Commissioned for DØ’s Run IIb
◆ Lower Level 1 trigger rate
◆ Increase trigger capabilities for

electrons and tau particles
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L1 Calorimeter-Track Trigger
• Incorporated into DØ’s global trigger list January 2007
• With L1CTK, we don’t need to prescale physics triggers up to
    L = 260 x 1030 cm-2s-1(without L1CTK, 170-200 x 1030 cm-2s-1)

• Dielectron Trigger

L1 no L1CTK

L1 with L1CTK 
L2 no L1CTK 
L2 with L1CTK
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Analysis
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Object Identification

Jets
◆  Energy clusters in
calorimeter

Muons
◆Tracks in central tracking
detectors
◆Hits in muon spectrometer

MET
◆  Reconstructed from
vector addition of
calorimeter ET, corrected
for muon PT

Primary Vertex
◆  Reconstructed from
at least 3 quality
tracks
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How to Measure the Cross Section

• Develop event selection criteria to find                  events
• Measure signal efficiency (εsig) using Monte Carlo
• Estimate number of background events (Nbkg)
• Count data events passing selection criteria (Nobs)

• where BR (                ) is the branching ratio and
  L int is the luminosity integrated over the time the
data set was recorded

! 

tt " µµ

! 

tt " µµ
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=
Nobs # Nbkg

$sig % Br(tt & µµ) % Lint
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Event Selection: Preselection

•  2 Muons, PT > 15 GeV
◆  “loose” muon quality
◆ Opposite charge
◆ With quality track match
◆ Cuts against cosmics
◆ Fiducial region

▲  |ηdet| < 2.0
▲ not in bottom hole

• Muon Promptness
◆ DCA significance < 3
◆ ΔZ(µ, vertex) < 1 cm

• Muon Isolation
◆ Tracking:  εtrk

halo
 < 0.12

◆ Calorimeter:  εcal
halo

 < 0.12

• Trigger Requirement
◆ Single Muon or Dimuon Trigger

•Primary Vertex Cuts
◆ Ntracks ≥ 3, |zV|< 60 cm
◆ Consistency between
reconstruction algorithms

• 2 Jets, PT > 20 GeV
◆ Cuts against fake jets
◆ Cuts against EM objects

• Channel Orthogonality
• Electron Veto
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Trigger Requirement

• Muon triggers have tighter muon quality cuts (hits in multiple
layers of the muon spectrometer) than the muon identification
requirement     could cost signal efficiency!

•Dimuon triggers
• Pro: Unprescaled
• Con: Requires two muons with tighter quality cuts

• Single muon triggers
• Pro: Only requires one muon with tighter quality cuts
• Con:  Sometimes prescaled

•Compromise
• Use single muon trigger if unprescaled (85%)
• Otherwise require dimuon trigger (15%)
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Type of Backgrounds

• Physics Backgrounds
◆ With intrinsic MET

◆ WW + jets → µµ + νν + jets
◆ WZ  + jets → µµ(µ) + ν + jets
◆ Z/γ* + jets → ττ  + jets→ µµ + νννν + jets

• Instrumental Backgrounds
◆ No intrinsic  MET or isolation
◆ Z/γ* + jets → µµ + jets

▲  fake MET due to event misreconstruction

◆ Multijet and W + jets production
▲ Muons from b/c decay fake isolation

µ

µ
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Background Rejection Cuts

•  Contour cut in MET and Δφ(μleading, MET) plane
◆ MET  : 45 GeV
◆ Xlow   : 90 GeV
◆ Xhigh : 95 GeV
◆ All events > 175° are cut

MET
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Background Rejection Cuts

• χ2
Z > 4

• χ2
Z

  is an event variable that measures the consistency of
the dimuon system with the Z mass hypothesis
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Cut Optimization

• Grid Search
• χ2

Z  and Contour cut
varied simultaneously

• 2401 points considered
• Monte Carlo samples

•    signal
• Zjj and WWjj backgrounds

• Figure of Merit

• Modified to account for 25%
uncertainty on Zjj background

• Before optimization: S/B = 1.62
After optimization:   S/B = 4.16
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Signal Efficiency

• Calculated using      Monte
   Carlo

• εcut  = Ncut /N

• 8 scale factors that make
  data-to-Monte Carlo corrections

• Errors are statistical

• Muon identification 69.5%, up
from 51% in prior analysis!

• Final εsig = 6.4 ± 0.2 %

! 

tt 

Cut Efficiency Error

2 Muons 0.695 0.004

! Muon ID 1.000 0.000

TrackMatch 0.996 0.001

! track match 0.968 0.000

! track "2 0.970 0.000

Opposite Charge 0.868 0.003

Muon PT > 15 GeV/c 0.687 0.005

Electron veto 0.998 0.001

#rigger Requirement 0.911 0.004

2 jets 0.795 0.005

Jet PT > 20 GeV/c 0.940 0.003

Vertex Quality Cuts 0.986 0.002

! vertex quality cuts 0.993 0.000

Dz(reco,d0root) 0.998 0.001

! $z reco 0.998 0.000

Dz(mu, vertex) 0.999 0.001

! $zmu 0.987 0.000

DCA 0.852 0.005

! DCA 0.991 0.000

Isolation 0.757 0.007

! Isolation 1.000 0.000

Z Fitter 0.722 0.008

Contour 0.546 0.011

Total Efficiency 0.064 0.002
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Diboson Backgrounds

• Background Processes:
◆ WW + jets → µµ + νν + jets
◆ WZ  + jets → µµ(µ) + ν + jets

• Estimated in Monte Carlo
◆ Normalized to theoretical cross section
◆ Scaled to integrated luminosity of data set

Only statistical errors are shown
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Z/γ* Background

• Background Processes:
◆ Z/γ* + jets → ττ  + jets→ µµ + νννν + jets
◆ Z/γ* + jets → µµ + jets

▲ No intrinsic MET, fake MET due to muon misreconstruction, noise in
calorimeter, other instrumental effects

• Estimated in Monte Carlo
◆ Constrained to data

▲ Ratio of data and Monte Carlo yields in preselected events in “Z mass window”
of 70 to 110 GeV

◆ Kinematic distributions tested against a control sample in data

Z/ γ*→ττ =0.158 ± 0.33

Z/ γ*→µµ =0.313 ± 0.075

Errors are statistical only
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Multijet and W + jets Background

• At least one fake isolated muon
• Estimated with matrix method

• Estimating the fake rate
◆ Require lead muon to be non-isolated
◆ Calculate isolation efficiency of second

lead muon
◆ Mµµ < 70 GeV (to remove Z

contamination)

• εiso = efficiency for isolated muons to pass
isolation criteria
• fµ = rate for non-isolated muons to pass
isolation criteria, “fake rate”

! 

N
W +QCD =

NT "#isoNL

fµ "#iso
! 

NL = N
Z + top

+ N
W +QCD

! 

NT = "isoN
Z + top + fµN

W +QCD
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Cut Flow Table

Errors shown are statistical and systematic added in quadrature

Data

Signal 
+ Background

Dominant
Background

Signal 
Other
Background



Cross-Check Plots

•After preselection cuts
• Histograms: Monte Carlo
• Points: data



Cross-Check Plots

•After all selection cuts
• Histograms: Monte Carlo
• Points: data
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Final Yields

• After all selection criteria have been applied

• Signal-to-background ratio: ≥ 4 

• Expected signal + background
yield = 3.6 events 

• 2 events are observed
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Cross Section Measurement

  

! 
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tt 

=
Nobs # Nbkg

$sig % Br(tt & µµ) % Lint

  2
Lint (pb-1)εsigNbkgNobs

! 

0.67"0.22
+0.24

! 

0.064 ± 0.002

! 

0.01571± 0.00031

! 

421.4 ± 25.7

! 

"
tt 

= 3.13#2.60
+4.17
(stat)#0.86

+0.92
(sys) ± 0.19(lumi)pb

! 

Br(tt " µµ)

•Extract cross section by minimizing
a negative log-likelihood that assumes
Poisson statistics

•Statistical uncertainty: vary likelihood
by half unit above minimum
•Systematic uncertainty: vary NBKG and
εsig within ±  1 σ and repeat likelihood
minimization
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Systematic Uncertainties

Fractional uncertainties (%) on signal efficiency εsig

Systematic uncertainties propagated into cross section uncertainty through likelihood fit
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Systematic Uncertainties

Fractional uncertainties on background yield NBKG

Systematic uncertainties propagated into cross section uncertainty through likelihood fit



39

Jet Energy Scale (JES) Corrections

• O - offset energy from noise
(electronic and radioactive)
pileup, multiple interactions, etc

• R - calorimeter response for jets
(< 1 from undetected particles in
hadronic shower)

• S - showering of jet particles
outside reconstruction cone and
showering of non-jet particles
inside jet reconstruction cone

|ηjet| Ejet (uncorrected)

Data

Monte Carlo

! 

E jet

particle
=
E jet

meas
"O

R # S
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Jet Energy Scale Uncertainties

• We calculate uncertainty by varying JES corrections by ± σ
  where σ = √ (σ2

data   + σ2
MC )

•   σdata   and σMC  include both statistical and systematic components

• Subcorrection contributions to jet energy scale systematic uncertainties

 σMC

σdata

|ηjet| Ejet (uncorrected)
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Candidate Events

φ  =  0º
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Candidate Events

φ  =  0º



43

Comparison

• We measure the top pair production cross section in the dimuon
channel to be:

• NNLO-NNNLL 6.77 ± 0.42

• Our result is consistent with the
Standard Model prediction!

•Also consistent with other DØ
 measurements
• Luminosity adjustment +16%

! 

"
tt 

= 3.13#2.60
+4.17
(stat)#0.86

+0.92
(sys) ± 0.19(lumi)pb
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Comparison

• Same cross section measurement before 16% luminosity
adjustment
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• This result has been combined with four other dilepton channels:

• Dielectron
• Electron Muon
• Muon + track  
• Electron + track

Combined Dilepton Cross Section

• Combination method accounts for correlations between
and           as well as between and

• To be submitted to PRD (currently under internal review)
• Results consistent with Standard Model but still statistically limited

! 

tt " ee

! 

tt " eµ

! 

tt " µ + track

! 

tt " e + track

! 

7.4 ±1.4(stat) ± 0.9(syst) ± 0.5(lumi)pb

! 

tt " ee

! 

tt " e + track

! 

tt " µµ

! 

tt " µ + track
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Improvements

Signal Efficiency 6.4 % → we only find 6.4/100 signal events!
• Muon Identification (70%)

◆ Already improved from 51%
◆ Muon + track selection ?

• Muon Isolation (76%)
◆ Consider loosening   εtrk

halo
 < 0.12  and   εcal

halo
 < 0.12

◆ Isolation-based likelihood instead of cut?

• Background rejection: χ2
Z (72%) and contour cut (55%)

◆ Expand χ2
Z to include MET information (currently PT -based)

◆ Multivariate discriminants : likelihood,  neural net
◆ b-tag at least one jet

• Consider including one jet bin in measurement
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Tevatron
•      collider

• σ     = 80 mb
• σ   = 7 pb

◆ Quark-antiquark
(85%)

◆ Gluon-gluon
     (15%)

• ∫L dt= 0.5–2 fb-1/yr

• 3500 – 14000 top
     pairs per year
• Measurements

statistics limited!

Tevatron vs. Large Hadron Collider

LHC (CERN)
• pp collider

• σpp = 125 mb
• σ   = 830 pb

◆ Quark-antiquark
(10%)

◆ Gluon-gluon
     (90%)

• ∫L dt = 10 – 100 fb-1/yr

• 8 million top pairs in
first year!

• Measurements
systematics limited!

! 

pp 

! 

s =1.96 TeV

! 

s =14 TeV

! 

pp 

! 

pp 

! 
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Conclusions

• We have measured the top pair production cross section in the dimuon
decay channel for proton-antiproton  collisions at

which is consistent with the theoretical prediction to NNLO.

• This measurement has a ~30 % increase in muon identification efficiency
and improved signal-to-background ratio with respect to prior measurement
• A combination with 4 other dilepton channels has been performed and
result to be submitted to PRD (under internal review)
• Methods developed for this analysis are being used in the 1 fb-1  analysis

• Systematics limited measurements will soon be possible…

! 

s =1.96 TeV

! 
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= 3.13#2.60
+4.17
(stat)#0.86

+0.92
(sys) ± 0.19(lumi)pb
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Top Mass Dependence

• Efficiency almost linear in
mt=160-190GeV

• Shift top mass down by one
GeV
→ efficiency decreases by
0.08%
→ cross section increases by
0.05 pb

For top mass of 171 GeV, cross section increases by 0.17 pb
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Z/γ*



Cross-Check Plots

• After preselection cuts
• Histograms: Monte Carlo
• Points: data



Cross-Check Plots

• After preselection cuts
• Histograms: Monte Carlo
• Points: data
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Trigger Efficiency

Dimuon Trigger mu1ptatxx, 1 medium muon
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Trigger Efficieny

• Single muon mu1ptxatlx + 10 GeV track, 3 GeV
medium
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Trigger Efficiency

• Single muon mu1ptxwtlx, 3 GeV medium
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Jet Reconstruction

• Reconstruction Procedure
◆ Remove noisy cells from calorimeter towers
◆ Cluster towers in a ‘cone’ above a certain energy

threshold
◆ Clusters are bases for proto-jets
◆ Add proto-jets together based on separation & energy

▲ Midpoint addition
▲ Merging & splitting

◆ List of jet candidates
• Apply cuts

◆ Distinguish jets from noise/fakes
◆ Distinguish from EM objects

• Apply Corrections
◆ Jet identification (data-to-Monte Carlo scale factor)
◆ Jet energy resolution corrections (resolution better in

Monte Carlo than data → smear Monte Carlo )
◆ Biggest correction: Jet Energy Scale…
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Fermilab

• Infrastructure
• Original facility built in 1967 for $243M
• Tevatron built in 1983 for $120M
• Main Injector built in 1999 for $259M

• Highlights
• Bottom quark discovered in 1977
• Top quark discovered in 1995
• Bs oscillation mixing in 2006
• Evidence for single top quark in 2006
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Protons and Antiprotons

• How do we obtain protons?
◆ Hydrogen gas is ionized to create negative ions
◆ Ions are accelerated and passed through carbon foil that removes electrons
◆ Protons are sent to the Main Injector

▲ Some sent to the Tevatron for collisions
▲ Some sent to the antiproton source

• How do we obtain antiprotons?
◆ Protons collide with a nickel target, producing a shower of particles including antiprotons
◆ Antiprotons collected and stored in Recycler before being accelerated in Main Injector and

sent to Tevatron for collisions
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Fermilab’s Accelerators

750 keV
0.04 c

400 MeV
0.71 c

8 GeV
0.994 c

150 GeV
0.99998 c

980 GeV
0.9999995 c

pbar  8 GeV

Cockroft-Walton Linear Accelerator Booster

Main Injector 
and RecyclerTevatron

Accumulator Ring

…
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Z/γ* Background
• Background Processes:

◆ Z/γ* + jets → ττ  + jets→ µµ + νννν + jets
◆ Z/γ* + jets → µµ + jets

▲ No intrinsic MET, fake MET due to muon misreconstruction, noise in
calorimeter, other instrumental effects

• Estimated in Monte Carlo
◆ Constrained to data

▲ Ratio of data and Monte Carlo yields in preselected events in “Z mass window”
of 70 to 110 GeV

◆ Kinematic distributions tested against a control sample in data

Z/ γ*→ττ =0.158 ± 0.33

Z/ γ*→µµ =0.313 ± 0.075

Errors are statistical only



62

Top Pair Production Cross Section

Or minimize:

Statistical Uncertainty:
vary negative log-likelihood half 
a unit (full unit as pictured) 
above the minimum   
Systematic Uncertainty:
vary NBKG and εsig within ±  1 σ
and repeat likelihood minimization
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Cross-Check Plots

•After preselection cuts
• Histograms: Monte Carlo
• Points: data



Cross-Check Plots

•After  all selection cuts
• Histograms: Monte Carlo
• Points: data


